Central Memory Manager ™ Of Eran Ron – C library for automatic, on request, handling dynamic multi dimension arrays

======================================

Introduction and User Manual

Version for compilers that support “_msize”

©2004 Eran Ron

This document file is free to distribute.

Contact form: http://g1948.com/MemManagerRegStep1.asp Tel: International Access Code++ 972 - 544 99 1948

 Free download (The memory manager & this manual): http://g1948.com/MemManagerGate.asp
1. Little about me..

I develop and manage projects in the software field since the star of microcomputers age at the early 80's. My unique specialty is developing zero down time quality software and solutions for real time systems.
You can find more details and example about developing zero down time software at

http://g1948.com/e_produc.asp . In the years 1990-1991 I wrote the preparation books for the Ministry of Education final exams on the subjects of Electronics and Computers on behalf of Kidum Institute.

I have a BA degree (summa cum laude) in a unique curriculum combining economics, management and information systems and another BA in Computer Science in a program called ‘Completions to master’ at Bar Ilan university. If you find my qualifications in technology or management useful to your company, I’ll be glad to consult your company.

2. General introduction – The motivation

One of the most common bugs of C (and C++) programs related to memory management. In Java the memory management “problem” was solved by the built in automatic memory management, the “Garbage collector”.

There are also kinds of smart pointers for C++ and C who are doing the job more or less similar to Java’s Garbage Collector.

These solutions won’t fit to real time environment. When programming a real time program we don’t want any outsider routine, which might force control for deleting memory allocation without our specific request. A critic system won’t allow interfere in the critic part of its computer program.

Yet, leaving the memory management to full “hand work” of each programmer separately is a bad choice. If there is a single pointer, the only thing to remember is to free the allocation in a single command. A good programmer usually (unfortunately not always) won’t forget to do it. The task becomes more complex when dealing with multi dimension vectors. In that case the programmer should deal with nested loops for correctly deleting it all. There sure might be cases when a programmer will built its own free routines with errors but the compiler won’t catch it. Worse, there might even be cases that cause the program to function incorrectly but not stop during run making the debug even harder. Sometimes the problem will be revealed after a serious disaster. Concerning the fact that many real time systems controls manes life (from breathing machines to airplanes and space ships), memory management is really serious thing to deal with.

In the project lifetime there is a high chance that the one who will have the ‘pleasure’ solving memory allocations leaks and bugs won’t be the programmer originally coded the lines. A fact that makes the job running after memory bugs more complex and expensive.

Introduction to my Memory Manager

The solution I decide is central memory management routines that may fit to all multi dimensions dynamic vectors allocation.

The memory manager is free to use under the conditions:

There is no warranty of any kind to the use of the memory manager. All programs using the CentralMemManagerOfEranRon.h should have the regular proper QA process before sent to production.

I have implemented functions for allocating and freeing multi dimensional dynamic arrays, changing the size of arrays and deleting items in between.

My goal: Making memory management fast and safe.

This first version does not work on some Unix systems. The reason is lack of support of the function _msize in the C library. The main advantage of the use of _msize is my ability to offer functions to use without the need to know the vector size at any point. So, for time now I have decided to let the users of my memory manager benefit that advantage.

I intend to expand the code to also fit compilers that doesn’t support _msize in the next versions or upon requests.

Function for example:

float** Resize2DimVector_Rectangle_floatsTable

(float ** vectorBeforeResize,

 int newVectorDim1Size,

 int newVectorDim2Size)

As you can see, the Resize2DimVector_Rectangle_floatsTable function does not ask to supply the vectorBeforeResize dimension 1 size. It will be fetched automatically by _msize.

There are two basic memory allocating built in functions: calloc and malloc. The difference is that calloc puts 0 value at each new cell allocated, makes it easier to debug. malloc may run faster because leaving cell value as is. The current version was based on calloc. I may send a malloc based memory manger upon request. I also give registered users the right to change all the calloc commands to malloc. Please pay attention to the difference:

void *calloc(size_t num, size_t size);

void *malloc(size_t size); // the size should be: num*size taken from calloc

For example:

fp= (int **)calloc(dim1size, sizeof(int*));

In the malloc version of CentralMemManagerOfEranRon should be replace with:

fp= (int **)malloc(dim1size* sizeof(int*));

3. Central Memory Manager ™ Of Eran Ron – User Manual

3.1 Allocating and freeing multi dimensional arrays:

The full (current version) list of allocating and freeing functions:

char** Build2DimDynamic_charsVector(int dim1size, int dim2size)

double** Build2DimDynamic_doublesVector (int dim1size,
int dim2size)

float** Build2DimDynamic_floatsVector (int dim1size,int dim2size)

int** Build2DimDynamic_intsVector (int dim1size,
int dim2size)

char*** Build3DimDynamicVectorOf_chars(int dim3size, int dim2size, int dim1size)

double*** Build3DimDynamicVectorOf_doubles(int dim3size, int dim2size, int dim1size)

float*** Build3DimDynamicVectorOf_floats(int dim3size, int dim2size, int dim1size)

int*** Build3DimDynamicVectorOf_ints(int dim3size, int dim2size, int dim1size)

int Free2DimDynamicVector(void ** fp)

int Free3DimDynamicVector(void *** fp)

int** Build2DimDynamic_intsVector (int dim1size, int dim2size)

This function allocates dim1size*dim2size vector of ints. There are much same functions for allocating vectors of chars , doubles and floats.

Please pay attention that if the operating system refuses to allocate memory, these functions returns NULL so you can decide in your code what to do in such cases. The allocating procedure frees any allocated memory that was done inside the function before the operating system refuses to allocate. So, it’s an option also to keep on running with the program, taking in account the allocating problem. The program may try to run allocating functions and commands latter on. No memory leaks were left when allocating fails in any of the CentralMemManagerOfEranRon functions.

** The function myFunctionWhenAllocatinFails in the example bellow is equal to safeExit function in the memory manager CentralMemManagerOfEranRon .

Example:

…….

char ** myVector;

myVector = Build2DimDynamic_charsVector(3,3);

if (myVector==NULL)

 exit(1);

or:

if (myVector==NULL)

safeExit();

or:

if (myVector==NULL)

myFunctionWhenAllocatinFails();

void myFunctionWhenAllocatinFails()

{

printf (“Sorry, the operating system refused to allocate new memory, so program ends\n”);

exit (1);

}

Another example:

void example_build3DvectorQQ()

{//15/4/04

int ***qq= NULL ;

qq= Build3DimDynamicVectorOf_ints(2,3,4);

if (qq==NULL) safeExit();

qq[0][0][0]=1;

qq[0][0][3]=4;

qq[0][2][0]=20;

qq[0][2][3]=23;

Free3DimDynamicVector(qq);

}

The set of functions FreeXDimDynamicVector (where X = the dimension, now supported up to 3 dimensions) automatically free those vectors supported.

int Free2DimDynamicVector(void ** fp)

The function gets pointer to 2-dimension vector (of any type) and frees the entire memory being allocated

Example:

int **fp1= NULL ;

fp1= Build2DimDynamic_intsVector(3,3);

if (fp1==NULL) safeExit();

fp1[0][0]=1;

fp1[0][1]=2;

fp1[1][0]=3;

fp1[2][1]=4;

Free2DimDynamicVector(fp1);

3.2 Resizing dynamic vectors
The functions:

int* Resize1DimVectorOf_ints
(int * vectorBeforeResize, int newVectorSize)

char* Resize1DimVectorOf_chars
(char * vectorBeforeResize, int newVectorSize)

double* Resize1DimVectorOf_doubles (double * vectorBeforeResize, int newVectorSize)

float* Resize1DimVectorOf_floats
(float * vectorBeforeResize,
 int newVectorSize)

char** Resize2DimVector_Rectangle_charsTable

(char ** vectorBeforeResize,

 int newVectorDim1Size,

 int newVectorDim2Size)

double** Resize2DimVector_Rectangle_doublesTable

(double ** vectorBeforeResize,

 int newVectorDim1Size,

 int newVectorDim2Size)

float** Resize2DimVector_Rectangle_floatsTable

(float ** vectorBeforeResize,

 int newVectorDim1Size,

 int newVectorDim2Size)

int** Resize2DimVector_Rectangle_intsTable

(int ** vectorBeforeResize,

 int newVectorDim1Size,

int newVectorDim2Size)

void** ResizeDim1_VectorOfPointersToPointers (void** VecOfPtrs, int VecOfPtrsDim1NewSize)

These functions deal with all the necessary actions for resizing dynamic vectors. Although resizing one dimension vector could be done in a built in C command, I have built the resize functions even for one dimension vector.

The reasons for that:

1. For unity design & operation , all arrays in all dimensions have the same resize mechanism.

2. I have heard about cases of programs that had problems with realloc. In that case, the use of my resizing would be an alternative since it is not using the built in realloc command inside it. It is also useful when having memory leaks when using realloc.

These resize functions gets the vector and the desirable size of each dimension of the vector. When expanding, there will be new fresh cells that will be given 0 initial value for any numeric array or spaces for chars array (correct for the version that apply to the calloc method). When shrinking, the lose will began from top down. For example: we had a dynamic vector a points to int[8] . Then we run the resize function with requested size 6. The outcome will be: vector a points to int[6], so cells a[6] and a[7] had deleted and freed by the function.

The ResizeDim1_VectorOfPointersToPointers function may be used for resizing arrays of pointers. A common case is a dynamic vector of strings

For example:

Array 1 of pointers to strings

(points to arrays of chars)

Arrays of chars

As shown in the example, array of pointers contain pointers, each may point to different length of string. The function ResizeDim1_VectorOfPointersToPointers supports this, so you may change the size of this kind of pointers array 1. When expanding such array, you should set the new string(s) length when allocating the new strings after running ResizeDim1_VectorOfPointersToPointers.

Arrays with fix length of all cells in the dimension are called in the memory manager Rectangles or Tables.

Example:

void present_scenario3_variableLeghtStrings_Expand()

{

char **ArrayToStrings= NULL ;

ArrayToStrings=(char**)(malloc(sizeof(char*)*2));

ArrayToStrings[0]=(char*)(malloc(sizeof(char)*2));

strcpy(ArrayToStrings[0],"a");

ArrayToStrings[1]=(char*)(malloc(sizeof(char)*3));

strcpy(ArrayToStrings[1],"bb");

ArrayToStrings=(char **)ResizeDim1_VectorOfPointersToPointers

((void **)ArrayToStrings,3);

ArrayToStrings[2]=(char*)(malloc(sizeof(char)*4));

strcpy(ArrayToStrings[2],"ccc");

Free2DimDynamicVector(ArrayToStrings);

}

More Examples:

void present_scenario3_variableLeghtStrings_Shrink()

{

// An example of dealing with expanding variable length strings

char **ArrayToStrings= NULL ;

ArrayToStrings=(char**)(malloc(sizeof(char*)*2));

ArrayToStrings[0]=(char*)(malloc(sizeof(char)*2));

strcpy(ArrayToStrings[0],"a");

ArrayToStrings[1]=(char*)(malloc(sizeof(char)*3));

strcpy(ArrayToStrings[1],"bb");

ArrayToStrings=(char **)ResizeDim1_VectorOfPointersToPointers

((void **)ArrayToStrings,1);

ArrayToStrings[0]=

Resize1DimVectorOf_chars(ArrayToStrings[0],5);

strcpy(ArrayToStrings[0],"1234");

Free2DimDynamicVector(ArrayToStrings);

}

void example_Resize1DimVectorOf_ints ()

{ // This example expands dynamic array.

// The array may also be shrunken

// if we send to the Resize function

// new size that is less than the current size

int* a=(int *)calloc(7, sizeof(int));

a[5]=7;

// Resizing a , so the new size is 8

a=Resize1DimVectorOf_ints(a,8);

a[7]=99;

printf("When resizing we should keep old a[5]=%d\n",a[5]);

printf("and allow adding new cell a[7]=%d\n",a[7]);

}

3.3 Free range of cells inside dynamic arrays
These set of functions let you free range of cells in between without damaging the rest of the vector.

The functions exist in the current version:

int* FreeRangeOfCellsIn1dimVectorOf_ints

(int * vectorBeforeResize,

 int indexOfStartCell,

 int indexOfEndCell)

char* FreeRangeOfCellsIn1dimVectorOf_chars

(char * vectorBeforeResize,

 int indexOfStartCell,

 int indexOfEndCell)

double* FreeRangeOfCellsIn1dimVectorOf_doubles

(double * vectorBeforeResize,

 int indexOfStartCell,

 int indexOfEndCell)

float* FreeRangeOfCellsIn1dimVectorOf_floats

(float * vectorBeforeResize,

 int indexOfStartCell,

 int indexOfEndCell)

char** FreeRangeOfCellsIn2dimVectorOf_chars

(char ** vectorBeforeResize,

 int indexOfDim1FirstRemovedCell,

 int indexOfDim1LastRemovedCell,

 int indexOfDim2FirstRemovedCell,

 int indexOfDim2LastRemovedCell)

double** FreeRangeOfCellsIn2dimVectorOf_doubles

(double ** vectorBeforeResize,

 int indexOfDim1FirstRemovedCell,

 int indexOfDim1LastRemovedCell,

 int indexOfDim2FirstRemovedCell,

 int indexOfDim2LastRemovedCell)

float** FreeRangeOfCellsIn2dimVectorOf_floats

(float ** vectorBeforeResize,

 int indexOfDim1FirstRemovedCell,

 int indexOfDim1LastRemovedCell,

 int indexOfDim2FirstRemovedCell,

 int indexOfDim2LastRemovedCell)

int** FreeRangeOfCellsIn2dimVectorOf_ints

(int ** vectorBeforeResize,

 int indexOfDim1FirstRemovedCell,

 int indexOfDim1LastRemovedCell,

 int indexOfDim2FirstRemovedCell,

 int indexOfDim2LastRemovedCell)

The input expected:

The vector address and the indexes of the cells to remove. If in any dimension there are no indexes to remove, the input should be –1.

Examples:

FreeRangeOfCellsIn2dimVectorOf_ints (vectorBeforeResize, -1, -1, 1, 2)

	indexes
	0
	1
	2
	3

	0
	
	
	
	

	1
	
	
	
	

	2
	
	
	
	

	3
	
	
	
	

	4
	
	
	
	

	5
	
	
	
	

	6
	
	
	
	

The colored cells would be deleted and dimension 2 would be shrunken (last index of dimension 2 will be 1)

FreeRangeOfCellsIn2dimVectorOf_ints (vectorBeforeResize, 3, 5, 1, 2)

	indexes
	0
	1
	2
	3

	0
	
	
	
	

	1
	
	
	
	

	2
	
	
	
	

	3
	
	
	
	

	4
	
	
	
	

	5
	
	
	
	

	6
	
	
	
	

	indexes
	0
	1

	0
	
	

	1
	
	

	2
	
	

	3
	
	

The colored celled would be deleted and both dimensions would be shrunken (last index of dimension 2 will be 1, and last index of dimension 1 will be 3)

More code examples:

void example_FreeRangeOfCellsIn1dimVectorOf_ints()

{

int* b=(int *)calloc(6, sizeof(int));

if (b==NULL) safeExit(); //15/4/04

b[0]=9;

b[5]=5;

b=FreeRangeOfCellsIn1dimVectorOf_ints(b,1,4);

}

void example_FreeRangeOfCellsIn2dimVectorOf_ints()

{

// This example shows the different kinds of free range

// actions (edges of in the middle and the types of

// cutting the dimensions.

// that can be done with the FreeRangeOfCells.. function

int **fp1= NULL ;

fp1= Build2DimDynamic_intsVector(3,3);

fp1[0][0]=1;

fp1[0][1]=2;

fp1[1][0]=3;

fp1[2][1]=4;

fp1=FreeRangeOfCellsIn2dimVectorOf_ints

(fp1,0,0,-1,-1);

Free2DimDynamicVector(fp1);

fp1= Build2DimDynamic_intsVector(3,3);

fp1[0][0]=1;

fp1[0][1]=2;

fp1[1][0]=3;

fp1[2][1]=4;

fp1[2][2]=5;

fp1[0][2]=6;

fp1[2][0]=7;

fp1=FreeRangeOfCellsIn2dimVectorOf_ints

(fp1,-1,-1,0,0);

Free2DimDynamicVector(fp1);

fp1= Build2DimDynamic_intsVector(3,3);

fp1[0][0]=1;

fp1[0][1]=2;

fp1[1][0]=3;

fp1[2][1]=4;

fp1[2][2]=5;

fp1[0][2]=6;

fp1[2][0]=7;

fp1=FreeRangeOfCellsIn2dimVectorOf_ints

(fp1,1,1,1,1);

Free2DimDynamicVector(fp1);

fp1= Build2DimDynamic_intsVector(3,2);

fp1[0][0]=1;

fp1[0][1]=2;

fp1[1][0]=3;

fp1[2][1]=4;

fp1[2][0]=7;

fp1=FreeRangeOfCellsIn2dimVectorOf_ints

(fp1,0,0,0,0);

Free2DimDynamicVector(fp1);

}

4. What next ?

If you are using my CentralMemManagerOfEranRon and have remarks, or wish to see more functions, please let me know. The contact may be trough the contact form in my site, http://g1948.com/MemManagerRegStep1.asp , or by calling me: XX+ 972-544 99 1948.

I will notify the registered users about any new version.

Thank you for choosing my memory manager.

Eran Ron

char ** address

char * adrees1

“abc”

“xy”

char * adrees2

4

3

2

‏11/4/06 ‏23:41 עמ' 1 מתוך 13

